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We numerically study the quantum oscillations in superconducting vortex-mixed states with d-wave pairing.
We show that in the parameter range of an underdoped cuprate superconductor, the commonly held assumption
that the period is given by the underlying Fermi-surface area using the Onsager relation becomes invalid. Using
this result, we conclude that the interpretation of the recent experimental data on YBCO as a signal of an
underlying Fermi surface with four hole pockets created by a �� ,�� folding cannot be ruled out.
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Recent experiments have shown quantum oscillations in
underdoped YBCO samples in strong magnetic field
�45 T.1–5 This has been interpreted as a signal of the un-
derlying Fermi surface �FS�. The period of the oscillation is
large and implies that the FS has been reconstructed, prob-
ably, by some translational symmetry-breaking order in the
ground state.6–9 However, for both materials that have been
studied, the simplest construction, a �� ,�� folding forming
four hole pockets in the original Brillouin zone �BZ�, would
imply a pocket too small comparing to the nominal doping
by about 25%.1,3 This partly motivated a number of workers
to interpret the data in terms of more complicated reconstruc-
tion such as incommensurate spin-density wave �SDW�.5,7

Furthermore, the measured Hall effect is negative10 and this
led LeBoeuf et al. to propose that the quantum oscillations
originate from electron pockets. Whether the negative Hall
effect is due to flux flow11 is currently a subject under debate.

We believe that in these experiments, the samples are still
in a vortex-mixed state. One evidence is the measured torque
hysteresis,5 which implies that vortices exist at least up to 45
T. Furthermore, the commonly quoted core size of 20 Å
�see, for example, the extrapolation based on scanning tun-
neling microscopy �STM� measurement12 as well as Nernst
measurements13� lead to an estimate of Hc2 of 100 T. There-
fore, to interpret the oscillations data, one has to understand
the quantum oscillations in the mixed state.

Up to now, all discussions assume that quantum oscilla-
tions in the mixed state maintain the same frequency as in
the normal state and are given by the Onsager relation, which
relates the frequency to the Fermi-surface area. This is true
of all experiments performed up to date where it is possible
to scan the magnetic field across Hc2.14,15 However, there is
no clear argument why the frequency should remain the
same and previous theories predict a small shift.16,17 We note
that all previous experiments have been done on conven-
tional s-wave low Tc superconductors, with the possible ex-
ception of the organics which may be d-wave, and the
high-Tc cuprates may be in quite a different parameter re-
gime. For example, the coherence length �0 is very short, on
the order of 4 or 5 lattice constants, and is the consequence
of a large energy gap �0. The number of Landau levels N is
about 10 in the high-Tc experiments, as opposed to 100’s or
1000’s for conventional superconductors. This means that the
semiclassical orbit encloses 10 flux quanta, i.e., 20 vortex
cores. There are good reasons to believe that the pairing
amplitude and the gap scale �0 are very robust in the under-

doped cuprates. In contrast, previous work on quantum os-
cillations in superconductors all deals with the s-wave pair-
ing in the conventional parameter range.16–19

In this Rapid Communication, we address the question of
whether the traditional picture continues to hold in a param-
eter regime which has not been tested experimentally. We
take as our model the Bogoliubov–de Gennes �BdG� equa-
tions in real space with a variety of vortex coordinates and
competing order parameters, which can take on arbitrary spa-
tial dependence. We take the coherence length and the pair
field as parameters and make no attempt to solve the problem
self-consistently. Since we do not expect the BdG equations
to be the correct microscopic theory for the underdoped cu-
prates, it makes little sense to determine these parameters
self- consistently. Rather, we treat this as a phenomenologi-
cal model. To the extent that the proximity to the Mott tran-
sition is not captured by this phenomenology, the application
of our theory to high-Tc problems should be treated with
caution. With these caveats, we write down a tight-binding
Hamiltonian on a square lattice constant a, and we set e=�
=a=1,

H = �
i,j�NN,�

�− t + �− 1�ix+jyi�sf�r�ij��eiAijci�
† cj�

+ �
i,j�NNN,�

�− t��eiAijci�
† cj�

+ � �
i,j�NN

�− 1�ix+jx�d�r�ij�ci+
† cj−

† + H.c.�
+ �

i,�
��− 1�ix+iy�Vs�r�i� + Vc�r�i� − ��ci�

† ci�, �1�

where t and t� are the hoppings, �d is the nearest neighbor
�NN� pairing, �sf is related to the staggered flux or equiva-
lently d-density wave �SF-DDW� order,20,21 and Vs, Vc are
the staggered spin and charge potential, respectively. The
potentials are defined on sites r�i= �ix , iy� and the pairing is
defined on bonds r�ij = �r�i+r� j� /2. The k-dependent d-wave gap
would be of size 2�d�cos kx−cos ky�. As a phenomenological
model, we take t to be on the order J, the antiferromagnetic
coupling. In underdoped cuprates, the gap size is then �0.5t.
Aij is the electromagnetic gauge field, which satisfies
�plaquetteAij =B and �triangleAij =B /2; B is the magnetic field.

The pairing amplitude near a vortex is described by the
ansatz 	�d�r��	=�0 sin � and cos ��r��=r0 /
r0

2+d�r��2, where
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�0 is the NN pairing amplitude deep inside the supercon-
ductor, r0 is the core size, and d�r�� is the distance to the
vortex center. When multiple vortices are near by, we replace
d by dmin= ��idi

�−p��−�1/p�, which is smaller than the distance
toward the nearest vortex. The choice of p	1 does not
qualitatively affect the result. The phase 
 of �d alone is not
a gauge-invariant quantity and has to be determined together
with Aij. One way is to assign 
 and then determine the
gauge field under the constraint mentioned above. We choose

 to follow the constraints: �i� 	�
	�� /2 for every link; �ii�
�loop�
=2�n where n is the number of vortices enclosed;
and �iii� 
 is periodic in the y direction. We then determine
Aij by minimizing the free energy � 1

2 	�d�r��	2vs�r��2 where
vs=
i−
 j −Aij is the superfluid velocity. The free energy is a
function quadratic in Aij, so we can optimize it by solving a
linear equation, using sparse matrix routines.

Vc, �sf, and Vs describe the order in the normal state. They
can be uniform, periodic, or localized around the vortices
depending on the order present. There is an additional piece
in Vc which balances the charge density in the mixed state. In
a finite system with periodic boundary conditions, it is not
always possible to fit in a periodic vortex lattice. Instead we
work with a disordered array of vortices. At each B, the
vortex positions are determined by a Monte Carlo annealing
process for particles with Cr−2 repulsion. The vortices are
stuck as we gradually lower the temperature. The resulting
vortex configuration has short-range order but is rather dis-
ordered. It is a reasonable representation of a snapshot of a
vortex liquid or a pinned vortex solid.

In order to see the quantum oscillations, the sample size
has to be quite large and the Hamiltonian cannot be effi-
ciently diagonalized. We can instead, use the iterative
Green’s function’s method22 to get the local density of states
�DOS� �LDOS�, at any fixed energy. We affix our sample to
two semi-infinite stripes in the �x direction. The stripes are
normal metal described by t and t�. We take periodic bound-
ary conditions in the y direction. Now the configuration is
similar to Ref. 22 and we can use the same method

GL�x� = �G0�x�−1 − tGL�x − 1�t†�−1, �2�

G�x� = �G0�x�−1 − tGL�x − 1�t† − t†GR�x + 1�t�−1, �3�

where G0�x� is the Green’s function for the isolated xth col-
umn, GL�x� �GR�x�� is the Green’s function at column x when
the right �left� side of the column is deleted, t is the hopping
matrix between the two consecutive columns �contains
t , t� ,�d�x�, and �sf�x��, and G�x� is the Green’s function for
the xth column in the original setting. Everything here is a
2y
2y matrix, containing the electron and hole parts. We
first go from left to right and compute GL for every x. Next
we go from right to left to compute GR and use Eq. �3� to
compute G�x� for all x. The imaginary part of the yth diag-
onal matrix element in the electron part of G�x� is then re-
lated to the local density of states at �x ,y�.

Using this method, we can get the LDOS everywhere in
our sample. However, the LDOS varies from place to place
due to its relative position to the vortices as well as the
disorder of the vortex lattice. To see the quantum oscilla-
tions, it suffices to look at the averaged DOS. In this work, if

not specified otherwise, we set t�=−0.3t, r0=5a, and the lat-
tice is of size 2000
80. We vary the magnetic field in ac-
cord with the number of the vortices, which is from 500 to
10000.

In Fig. 1, we showed the result where we start from the
state in which the Fermi surface is reconstructed by �� ,��
SF-DDW order. If we define Hc2 to be the field where vorti-
ces start overlapping and r0=5a, this gives �

�0

2�a2 � 1
Hc2

=25,
where �0 here is the full flux quantum, hc /e. The experi-
mental probe, roughly at the tenth Laudau level, would be
around �

�0

2�a2 � 1
Hc2

=60. We create a gap large enough to kill
the electron pockets, leaving four hole pockets shown in the
inset. We found that the oscillation period of the normal state
matches the prediction from the Onsager relation and the
Luttinger theorem. As we turn on the d-wave pairing ampli-
tude, the period of the quantum oscillation increases. As the
pairing gets large, the period of the oscillation is off from the
period in the normal state by about 20%. The frequency
shifts are clearly seen in the Fourier transform shown in Fig.
2. Note that in our modeling of the vortex cores, the super-
conducting pairing remains, albeit at reduced amplitude,
even for B�Hc2. This explains why the frequency shift per-
sists somewhat above Hc2, but we can ignore that region
because it is not reached experimentally. Note that the oscil-
lations survive even down to 0.5Hc2. We have also done
calculations for a �� ,�� SDW order, and the period is shifted
in a similar way �see Fig. 2�b��.

To check whether this is a generic phenomena, we ran a
simpler setting with an electron pocket centered at origin.
The result is showed in Fig. 3. Again, as we turned on the
d-wave pairing, the frequency is reduced as the pairing is
increased. It is worth noting that we shifted the chemical
potential in order to maintain the total electron density as we

FIG. 1. �Color online� This plot shows the averaged DOS vs
1 /B in the vortex-mixed state with �� ,�� SF-DDW order. From
this figure and below, if not mentioned otherwise, B is in units of

�
�0

2�a2 �. If we view Hc2 as the field strength where vortices are over-
lapping, it corresponds to 1 /B=25 in the plot. Different lines in the
plot show states with different pairing fields. The maximum pairing
gap in the antinodal direction would have size �4�. We can see
that as the gap increases, the frequency decreases. The inset is a plot
of the Fermi surface in the normal state. There are four hole pockets
with 2.5% area each of the original BZ. This corresponds to p
=0.1 from half filling. In this plot, �sf=0.25t.
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increase the pairing. We also added a charge potential to
make the charge density approximately uniform inside and
outside the vortex core. On the other hand, if we simply keep
the chemical potential to be the same as in the normal state,
the period still decreases but by about half �not shown�. The
effect of the chemical-potential shift is significant in the case
of Fig. 3 because the pairing is strong and the electron is far
from the particle-hole symmetric. It is less significant in the
more realistic case of Fig. 1.

In Fig. 4, we started with a two-pocket Fermi surface
reconstructed by a �� ,�� SDW order and turned on a small
d-wave pairing. The oscillations from the electron pockets
are clearly visible in the normal state but are rapidly killed in
the mixed state. Note the pair field is very small, about 10
times smaller than that in Fig. 1. One explanation is that the
electron pocket originates from the antinodal region where
the gap is large and is dephased by the random pairing po-
tential due to the random vortex configurations. However,
this cannot be the whole story because we find that for
s-wave pairing with similar pairing gap size, the electron and
hole pockets both survive. One difference we noticed is that
in the s-wave case, there is a strong density-of-states peak
inside the vortex core, much larger than that inside the
d-wave core. At this point, we do not have a full understand-
ing of the suppression of the electron pocket oscillations.

We have also calculated the oscillation for an “incommen-
surate” SDW, with period Q= ���1�2�� ,�� where �=1 /8.
We impose a sinusoidal Vs�r��=Vs0 cos�2��x� and Vc�r��

=Vc0 cos�4��x�. Complicated band structures in this kind of
potential were computed by Millis and Norman.7 It is in-
structive to consider the hybridization only with the primary
vector Q for SDW and 2Q for the charge component. The
upper inset in Fig. 5 shows the FS reconstruction of a pure
incommensurate SDW order �Vc=0�, and we see that after
hybridization only two closed orbits are possible. One is a
small hole pocket and the other is the electron pocket. The
larger hole pocket becomes an open orbit. Inclusion of Vc
further cuts the small hole pocket to an even smaller area.

The lower inset shows the reconstructed FS with SDW
and charge-density wave �CDW� present. In the averaged
DOS plot, we indeed see the oscillations from the electron
pockets and the small hole pockets. The electron pocket is
again heavily suppressed in the mixed state, leaving a hole
frequency which is too small compared with experiment.

In conclusion, we have shown that the Onsager relation
does not always apply to quantum oscillations in the vortex-
mixed state. When the pairing is strong and the coherence
length is short, we find a systematic decrease in the fre-
quency. We have also checked that if the core size is in-
creased, the shift is diminished. Thus, our result is consistent
with experiments performed so far on conventional super-
conductors, which are in the large core size limit. The impli-
cation for the experiment on high-Tc cuprate is that the
simple interpretation in terms of �� ,�� folding creating four

(a) (d)(b) (c)

FIG. 2. �Color online� Fourier transforms of plots shown in Figs. 1, 3, and 4. We take a=4 Å and the frequency is then in units of tesla.
The color used is the same as in the averaged DOS vs 1 /B plots. The normal-state frequency is shown by the green line. �a� SF-DDW. �b�
SDW, p=0.125. The peak at the right is the second harmonic. �c� Electron pocket centered at origin. �d� Two-pocket SDW; the peak at
�380 T is from the electron pockets and the one at �750 T is from the hole pockets.

FIG. 3. �Color online� An electron pocket is centered at the
origin. The pocket has an area of 14% of the original BZ. In this
plot, t�=−0.14t. The maximum gap �1.5�.

FIG. 4. �Color online� Four hole pockets and two electron pock-
ets are present. In this plot, Ah=2.9% and Ae=1.44% of the original
BZ and p=0.086. In the normal state, from Onsager’s relation we
can determine that the peaks with period 11 are from electron pock-
ets. The amplitude is heavily suppressed in the mixed state. In this
plot, Vs=0.2t.
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hole pockets cannot be automatically ruled out. There are
two candidates for �� ,�� order. One is SDW order and the
second is SF-DDW order. We note that in view of the recent
measurement that the g factor is much less than 2,23 the
SF-DDW scenario must be accompanied by some additional
order such as an incommensurate SDW. In that case, there
are possibilities for larger orbits composed of two or three
hole pockets shifted by � if magnetic breakdown is taken
into account. The other interpretation is the incommensurate
SDW order. In this case, the observed pocket must be iden-
tified with the electron pocket. Alternatives in terms of SF-
DDW with electron pockets have also been proposed.6,8,9

While the electron pocket is rapidly suppressed in the mixed
state in our model, it is not clear how general this conclusion
is, i.e., whether it is valid beyond the BdG theory. We think
that within the Fermi-liquid scenario, both are viable options
at this point and further work will be needed to distinguish
between them.

We thank T. Senthil for many helpful discussions. This
work is supported by the NSF under Grant No. DMR-
0804040.
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FIG. 5. �Color online� 1/8 stripe state with t�=−0.4t, Vs0=0.4,
and Vc0=0.1. The upper inset shows the hybridization of the pri-
mary band as we turn on Vs �with Vc=0�, and the lower inset shows
the developed Fermi surface. The fast oscillations localized around
1 /B�20 is a breakdown effect. At lower fields, the fast oscillation
�period 6� is from the electron pockets and the very slow oscillation
�only 1 period seen in the range� is from the hole pockets. As we
turn on superconductivity, the oscillation from the electron pockets
is diminished.
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